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Abstract

A theoretical study on a linear hydroelastic vibration of two annular plates coupled with a bounded fluid is presented.

The proposed method, based on the Rayleigh–Ritz method and the finite Hankel transform, is verified through a finite

element analysis by using a commercial computer code, with an excellent accuracy. It is assumed that plates with an

unequal thickness and with an unequal inner radius are clamped along their edges and an inviscid compressible fluid fills

the space between the annular plates and the outer rigid vessel. When the two annular plates are identical, distinct in-

phase and out-of-phase modes are observed. By increasing the difference in the plate thickness, the symmetric in-phase

and out-of-phase modes with respect to the middle plane of the system are gradually shifted to pseudo in-phase and out-

of-phase modes, and eventually they are changed to mixed modes. It is found that the natural frequencies decrease with

an increase of the fluid compressibility, and additional modes due to a fluid concentration are observed when the plates

are coupled with a compressible fluid. The fluid compressibility effect on the natural frequency is dominant in the out-

of-phase modes and the higher modes. Also, the effects of the fluid thickness or the distance between the plates and the

inner radius of the plates on the natural frequencies of the wet modes are investigated.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Annular plates are one of the most common kind of components used in mechanical and structural engineering. In

recent literature, there has been renewed interest in the problem of plates vibrating in contact with water. For example,

multiple circular or annular plates in contact with a coolant have been used in an integral-type nuclear reactor for

irradiation shielding. It was found that the dynamic characteristics of the multiple circular plates were changed because

of the presence of coolant fluid gaps between the plates (Jeong et al., 2001).

Kasahara et al. (1994) calculated the natural frequencies of two circular plates coupled with a fluid and they verified

them by experiment. They suggested an analytical method based on a matrix size reduction by introducing a modal

method for both the structure and the fluid. Amabili et al. (1996) studied the hydroelastic vibration of an annular plate

in contact with an infinite fluid by using the Rayleigh–Ritz method based on the mode expansion of dry mode shapes.

For the case of a fluid domain with finite depth, Amabili (1996) investigated the free vibration of an annular plate in

contact with water on one side by using the Rayleigh–Ritz method, based on the assumed mode approach. Amabili and
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Dalpiaz (1998) developed a theory for vibrations of an annular plate glued to a liquid-filled annular cylindrical tank and

carried out an experiment to verify their theory. Amabili (2000a) also theoretically investigated the free vibration of a

fluid-filled hermetic can composed of a circular cylindrical flexible shell and two circular end-plates by using the

Rayleigh–Ritz method. Cho et al. (2002) studied the modal characteristics of a liquid storage tank baffled with an

annular plate by the coupled structural–acoustic finite element method (FEM). Theoretical and experimental studies on

the natural frequencies of free-edge annular plates resting on a free surface or completely submerged were carried out by

Kwak and Amabili (1999). They considered an unbounded fluid domain and they also introduced nondimensionalized

added virtual mass incremental (NAVMI) factors in order to estimate the fluid effect on the individual natural

frequencies of the fluid–structure system. Liang et al. (1999) theoretically examined annular plates placed on the fluid

domain which is an annular aperture in an infinite rigid wall by applying the Hankel transformation. However, all the

work outlined above, deals with a single annular plate. Jeong (2003) theoretically examined the free vibration of two

identical circular plates coupled with a bounded incompressible fluid by using the Rayleigh–Ritz method. Recently,

Biswal et al. (2004) studied the dynamic response of a liquid-filled cylindrical tank with an annular baffle by using a

finite element formulation, and Kim and Lee (2005) developed an analytical solution for the same problem.

In spite of these many researches on the hydroelastic vibration problem, there has been no attempt to tackle the

problem described in the present paper, and the researchers mentioned above have also ignored the effect of fluid

compressibility on the modal characteristics of annular plates. Especially, in a light water cooled nuclear reactor, it is

known that the coolant density is reduced to about 70% and the coolant bulk modulus is also reduced by about 20%

under normal operational conditions. Such a change in the compressibility and the density of the coolant can cause a

remarkable difference in the dynamic characteristics of a structure submerged therein. This paper is concerned with the

coupling effect of a fluid on the free vibration characteristics of two annular plates with an unequal geometry and

clamped boundary conditions. A compressible and frictionless fluid is assumed to be bounded by the outer rigid vessel

in the radial direction. The inner radius effect of the annular plates on the natural frequencies is also studied. The

natural frequency of each mode under wet conditions is normalized with respect to the natural frequency of the dry

mode to estimate the relative hydrodynamic effect for the case of identical annular plates. Also investigated is the effect

of a fluid gap between the plates on the natural frequency of the wet condition.
2. Theoretical background

2.1. Formulation for two annular plates

Fig. 1 shows two annular plates coupled with a compressible fluid, where R, h1, and h2 ð5RÞ represent the outer

radius, the thickness of the upper and the lower annular plates, respectively. The inner radius of the upper annular plate

is denoted by a, and the lower one is referred to as b. The fluid is radially bounded by an outer rigid cylindrical vessel
d /

a
R

x h

h

r

d /

Fig. 1. Two annular plates coupled with a compressible fluid.
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and each annular plate is clamped along its inner and outer edges. For a simple formulation of the theory, the gravity

effect is neglected. The upper annular plate is referred to by the subscript ‘‘1’’, while the lower one by the subscript ‘‘2.’’

In the Rayleigh–Ritz method, each individual wet mode shape can be expanded in a series by using a finite number of

admissible functions, Wnmj (m ¼ 1, 2,y,M) and appropriate unknown coefficients qm and pm. Since the dry mode

shapes of an annular plate are selected as admissible functions in the theory, individual wet transverse displacements of

the annular plates for an arbitrary nodal diameter n (n ¼ 0, 1, 2,y), can be written in the form of

w1ðr; y; tÞ ¼ w1ðr; yÞ expðiotÞ ¼ cosðnyÞ
XM
m¼1

qmW nmðrÞ expðiotÞ for the upper plate, (1a)

w2ðr; y; tÞ ¼ w2ðr; yÞ expðiotÞ ¼ cosðnyÞ
XM
m¼1

pmW nmðrÞ expðiotÞ for the lower plate, (1b)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, o is the natural frequency of the fluid-coupled annular plates, and t is the time. The dry eigenfunctions

of an annular plate in air are thus expressed as follows:

W nmðrÞ ¼ JnðlnmrÞ þ AnmYnðlnmrÞ þ BnmInðlnmrÞ þ CnmKnðlnmrÞ, (2)

where Anm, Bnm and Cnm are the arbitrary modal constants which can be determined by the plate boundary conditions.

Jn and In are the Bessel functions and the modified Bessel functions of the first kind, and Yn and Kn are the Bessel

functions and the modified Bessel functions of the second kind, respectively. Before determining the natural frequencies

of the fluid–structure coupled system, we should consider the clamped geometric boundary condition of the upper

annular plate displacement. The transverse displacement, Wnm, should disappear at r ¼ R and r ¼ a. Therefore,

JnðlnmaÞ þ AnmYnðlnmaÞ þ BnmInðlnmaÞ þ CnmKnðlnmaÞ ¼ 0, (3)

JnðlnmRÞ þ AnmYn ðlnmRÞ þ BnmInðlnmRÞ þ CnmKnðlnmRÞ ¼ 0. (4)

When we consider another geometric boundary condition with a zero slope along the inner and outer edges of the

upper annular plate, the following equations can be obtained:

J0nðlnmaÞ þ AnmY
0
nðlnmaÞ þ BnmI

0
nðlnmaÞ þ CnmK

0
nðlnmaÞ ¼ 0, (5)

J0nðlnmRÞ þ AnmY
0
nðlnmRÞ þ BnmI

0
nðlnmRÞ þ CnmK

0
nðlnmRÞ ¼ 0. (6)

From the boundary conditions described by Eqs. (3)–(6), the characteristic equation for the dry modes can be

simplified by the following determinant form:

JnðlnmaÞ YnðlnmaÞ InðlnmaÞ KnðlnmaÞ

JnðlnmRÞ YnðlnmRÞ InðlnmRÞ KnðlnmRÞ

J0nðlnmaÞ Y0nðlnmaÞ I0nðlnmaÞ K0nðlnmaÞ

J0nðlnmRÞ Y0nðlnmRÞ I0nðlnmRÞ K0nðlnmRÞ

����������

����������
¼ 0. (7)

The modal constants, Anm, Bnm and Cnm can be derived from the boundary conditions of Eqs. (3)–(6) as listed in

Appendix A. The frequency parameter for the lower annular plate can also be calculated by replacing b instead of a in

Eq. (7).

2.2. Displacement potential for a fluid

The inner space surrounded by two annular plates, the rigid walls and the vessel is filled with an inviscid and

compressible fluid as illustrated in Fig. 1. Each opposite facing side of the annular plates is in contact with the fluid. The

fluid oscillation induced by a vibration of the plates can be described with a velocity potential that satisfies the

Helmholz equation:

r 2Fðr; y; x; tÞ ¼ Fðr; y;x; tÞ;tt=c2, (8)

where c is the sound speed in the fluid medium and r2 is the Laplacian operator in the polar coordinates r and y. The
velocity potential function F can be separated into the displacement potential fðr; y; xÞ and the harmonic time function.

Thus,

Fðx; r; y; tÞ ¼ iofðr; y; xÞ exp ðiotÞ. (9)
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Eq. (8) can be solved in cylindrical coordinates by using the separation of variables method with respect to r, y, and x

for an arbitrary nodal diameter n. Because the displacement potential at r ¼ 0 must be finite, the term involving Yn must

be discarded in order to avoid a singularity of the fluid displacement at r ¼ 0. This leads to the following solution:

fðr; y; xÞ ¼ cosðnyÞ
X1
s¼1

JnðbnsrÞ½Ens sinhðansxÞ þ Fns coshðansxÞ�, (10)

where Ens and Fns are the unknown constants describing the fluid motion, and a coefficient bns can be determined by the

fluid boundary condition of Eq. (12). Here, the coefficient bns is related to coefficient ans by

b2ns ¼ a2ns þ ðo=cÞ2. (11)

The radial displacement of the fluid must disappear at r ¼ R, because the rigid cylindrical vessel has an impermeable

wall; i.e.,

qfðr; y;xÞ
qr

����
r¼R

¼ 0. (12)

Therefore, the coefficient, bns can be determined for a fixed n by inserting Eq. (10) into Eq. (12), thus through

J0nðbnsRÞ ¼ 0. (13)

In order to determine the unknown coefficients Ens and Fns in Eq. (10), compatibility conditions at the interfaces of

the upper and the lower annular plates with the fluid should be used. As the transverse displacement of each plate

should be identical to a normal displacement of the fluid, the dual compatibility conditions can be written as

qfðr; y;xÞ
qx

����
x¼d=2

¼
0 rpa;

w1ðr; yÞ aorpR;

"
(14a)

qfðr; y;xÞ
qx

����
x¼�d=2

¼
0 rpb;

w2ðr; yÞ borpR:

"
(14b)

Substituting Eqs. (1a, b), (2) and (10) into Eqs. (14a,b) and integrating term by term after multiplying by rJnðbnsrÞ in

the interval (0,R) for the finite Hankel transform, we produceZ R

a

XM
m¼1

qm

X1
s¼1

½JnðlnmrÞ þ AnmYnðlnmrÞ þ BnmInðlnmrÞ þ CnmKnðlnmrÞ�rJnðbnsrÞdr

¼

Z R

0

X1
s¼1

ansJnðbnsrÞ½Ens coshðansxÞ þ Fns sinhðansxÞ�rJnðbnsrÞdr, ð15aÞ

Z R

b

XM
m¼1

pm

X1
s¼1

½JnðlnmrÞ þ AnmYnðlnmrÞ þ BnmInðlnmrÞ þ CnmKnðlnmrÞ�rJnðbnsrÞdr

¼

Z R

0

X1
s¼1

ansJnðbnsrÞ½Ens coshðansxÞ þ Fns sinhðansxÞ�rJnðbnsrÞdr. ð15bÞ

From the orthogonality property of the weighting function, rJnðbnsrÞ, one can write

XM
m¼1

qm

X1
s¼1

L1nms þ AnmL2nms þ BnmL3nms þ CnmL4nms½ �

¼
X1
s¼1

ansHns Ens coshðansd=2Þ þ Fns sinhðansd=2Þ
� �

, ð16aÞ

XM
m¼1

pm

X1
s¼1

L1nms þ AnmL2nms þ BnmL3nms þ CnmL4nms½ �

¼
X1
s¼1

ansHns Ens coshðansd=2Þ � Fns sinhðansd=2Þ
� �

, ð16bÞ
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where the derived values of L1nms, L2nms, L3nms, L4nms and Hns are also listed in Appendix A. Therefore, the

displacement potential of the fluid can now be expressed in terms of the unknown coefficients qm and pm, instead of the

unknown coefficients Ens and Fns in accordance with

Ens ¼

PM
m¼1ðqm þ pmÞZnms

2ans coshðansd=2Þ
; Fns ¼

PM
m¼1ðqm � pmÞZnms

2ans coshðansd=2Þ
, (17a,b)

Znms ¼
ðL1nms þ AnmL2nms þ BnmL3nms þ CnmL4nmsÞ

Hns

. (17c)

Eventually, the displacement potential of the compressible fluid can be reduced by substituting Eqs. (17a,b) into Eq.

(10), yielding

fðr; y; xÞ ¼ cosðnyÞ
XM
m¼1

X1
s¼1

ZnmsfqmNnsðxÞ þ pmMnsðxÞgJnðbnsrÞ, (18)

where

NnsðxÞ ¼
1

2ans

sinhðansxÞ

coshðansd=2Þ
þ

coshðansxÞ

sinhðansd=2Þ

� �
, (19a)

MnsðxÞ ¼
1

2ans

sinhðansxÞ

coshðansd=2Þ
�

coshðansxÞ

sinh ðansd=2Þ

� �
. (19b)
2.3. Method of a solution

It is useful to introduce the Rayleigh quotient, as already suggested by Zhu (1994) and Amabili (2000b) for a

generalized fluid–structure interaction problem, and also applied to a circular plate submerged in a compressible fluid

by Jeong and Kim (2005). When the gravity effect is neglected, we can obtain a simplified form

o2 ¼
Vp

T�p þU�F
, (20)

where Vp is the strain energy of the plates, and the reference kinetic energy of the plates is denoted by T�p. The fluid

energy term U�F includes the kinetic and the potential energies of the compressible fluid and it can be evaluated from a

fluid surface motion:

U�F ¼
1
2
ro

Z 2p

0

Z R

a

qfðr; d=2Þ
qx

� �
fðr; d=2Þcos2ðnyÞrdrdy

þ 1
2
ro

Z 2p

0

Z R

b

qfðr;�d=2Þ

qx

� �
fðr;�d=2Þcos2ðnyÞrdrdy, ð21Þ

where ro is the fluid mass density. Eq. (21) is simplified by an application of Eqs. (14a) and (14b) to

U�F ¼
1
2
roky

Z R

a

w1xðr; d=2Þrdrþ

Z R

b

w2xðr;�d=2Þrdr

� �
, (22)

where

fðr; y; xÞ ¼ cosðnyÞxðr; xÞ, (23a)

ky ¼
2p for n ¼ 0;

p for n40:

	
(23b)

For the numerical calculations for each fixed n value, a sufficiently large finite number of the terms must be

considered in all the previous expansions. To solve Eq. (20) numerically, it is also necessary to provide a matrix

representation. Hence, the column vectors q, p and Q of the unknown coefficients are introduced as follows:

q ¼ f q1 q2 q3 . . . qM g
T, (24a)
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p ¼ f p1 p2 p3 . . . pM g
T, (24b)

Q ¼
q

p

( )
. (24c)

Substituting Eqs. (1a), (1b), (2), (18) and (24a)–(24c) into Eq. (22) gives

U�F ¼ rokyQTGQ, (25)

where the 2M� 2M fluid energy matrix, G is obtained by performing an integration of Eq. (22) term by term. In the

numerical computation, the sum over s must be stopped at an integer value large enough to provide the required

accuracy. Using the orthogonal property of the mode shapes, the reference kinetic energy of the two annular plates is

given by

Tp ¼ rkyQTZQ, (26)

where r is the mass density of the annular plates, and Z is the 2M� 2M symmetric kinetic energy matrix of the two

annular plates written as

Z ¼
Z1 0

0 Z2

" #
, (27a)

Zjði;kÞ ¼
hj

2
Ljdik; dik : Kronecker delta; (27b)

L1 ¼

Z R

a

rW 2
ni dr; L2 ¼

Z R

b

rW 2
ni dr. (27c,d)

The term Lj in Eq. (27b) is obtained by carrying out an integration of Eqs. (27c) and (27d) after inserting Eq. (2) into

Eqs. (27c) and (27d):

Lj ¼ ½S1j þ A2
niS2j þ B2

niS3j þ C2
niS4j þ 2ðAniS5j þ BniS6j þ CniS7j þ AniBniS8j

þ AniCniS9j þ BniCniS10jÞ�, ð28Þ

where the coefficients S1j ;S2j ; . . . ;S10j are listed in Appendix A.

The maximum strain energy of the two annular plates can be computed as a sum of the kinetic energies for each

eigenfunction

Vp �
D1

2

Z 2p

0

Z R

a

ðr2w1Þ
2rdr dyþ

D2

2

Z 2p

0

Z R

b

ðr2w2Þ
2rdrdy, (29)

where Dj ¼ Eh3j =12ð1� m2Þ is the flexural rigidity of the annular plates; m and E are Poisson’s ratio and the modulus of

the elasticity of the plates, respectively. Since the value of ðr 2wjÞ
2 is almost identical to ðl4niÞjw

2
j , the maximum strain

energy of the plates becomes

Vp ¼ kyQTHQ, (30)

where H is the 2M� 2M diagonal maximum strain energy matrix of the annular plates given by

H ¼
H1 0

0 H2

" #
, (31a)

Hjði;kÞ ¼
ðl4niÞj

2
DjLjdik. (31b)

The natural frequencies and the wet mode shapes of the two annular plates in contact with fluid can be estimated by

substituting the reference kinetic energy and the maximum strain energy into Eq. (20) and minimizing the Rayleigh

quotient with respect to the unknown coefficients, qm and pm:

½H � o2ðrZ þ roGÞ�Q ¼ f0g. (32)

The determinant of the left-hand side in Eq. (32) must vanish to obtain the nontrivial solution, and then the coupled

natural frequency o of the wet mode can be calculated. Because the matrix G is a function of o, Eq. (32) cannot be an
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ordinary eigenvalue problem and the solution of the problem cannot be obtained directly, so an iterative computation is

necessary.
3. Example and discussion

3.1. Theoretical and finite element models

To demonstrate the precision of the present method, an example is solved. The fluid-coupled system is composed of

two annular plates and water. The annular plates are made of aluminum so that the fluid effect can be strong. The

physical properties of the material are as follows: modulus of elasticity ¼ 69.0GPa, Poisson’s ratio ¼ 0.3 and mass

density ¼ 2700 kg/m3. Water as the fluid is in contact with the plates, with a density of 1000 kg/m3 and a bulk modulus

of 2.2GPa, which is equivalent to a sound speed of 1483m/s. The viscosity of water is neglected in the theoretical

calculation. The upper annular plate has an inner radius of 40mm, an outer radius of 200mm, and a thickness of

2.0mm, while the lower one has an inner radius of 50mm, an outer radius of 200mm, and a thickness of 2.5mm. The

distance between the annular plates, d, is 30mm.

On the basis of the preceding analysis, in order to obtain the natural frequencies of the two annular plates coupled

with water, the determinant of the left-hand side in Eq. (32) is calculated by using a commercial software, MathCAD.

The characteristic equation derived in the preceding sections involves an infinite and a finite series of algebraic terms. To

check the convergence and accuracy of the method, the expansion terms s and m are increased. The expansion term s is

set at 300 and the expansion term m for the admissible function is set at 40, which provides a convergent solution in the

range of the considered modes. Although Eq. (32) is not an ordinary eigenvalue problem, the calculations can be

performed by using an iteration process. The initial frequencies are obtained from the incompressible fluid case which

leads to an ordinary eigenvalue problem, and the expected frequency zone was swept to search for the coupled natural

frequencies that satisfy Eq. (32) for the compressible fluid case.

Additionally, to check the validity of the theory, a finite element analysis is also carried out for the fluid-coupled

system by using a commercial computer code, ANSYS. The finite element model is constructed with the same plate

geometry, boundary conditions and material properties used in the theoretical calculation. For the FEM analysis, a

two-dimensional axisymmetric model is constructed with harmonic fluid elements (FLUID81) and harmonic shell

elements (SHELL61). The fluid element ‘FLUID81’ with four nodes has three degrees of freedom at each node and it is

particularly well suited for calculating hydrostatic pressures and fluid–structure interactions. The shell element

‘SHELL61’ with two nodes has four degrees of freedom. The fluid domain is divided into a number of identical fluid

elements, while the upper and the lower plates are also divided into shell elements. The nodes of the fluid elements at

r ¼ 0 are constrained in the radial direction only. Additionally, the fluid movement at r ¼ R, namely along the rigid
R = 
a = 

b
 = 

Fig. 2. Finite element model for two annular plates coupled with a fluid.
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cylindrical wall, is restricted to the radial direction only, because the vertical velocity of the fluid element nodes adjacent

to each surface of the wetted annular plates coincides with that of the plates, so that the finite element model can

simulate Eqs. (14a) and (14b). Each annular plate is divided into 60 two-dimensional axisymmetric shell elements of the

same size, and the fluid region of the finite element model consists of 960 (12� 80) identical fluid elements as illustrated

in Fig. 2. All the displacements and rotations are restricted along each plate edge in order to create a clamped boundary

condition in the finite element model. In the finite element analysis, the Block Lanczos method is used to extract 50

modal frequencies and the corresponding mode shapes between 20 and 12 000Hz.

3.2. Theoretical and finite element analysis results

The natural frequencies of the annular plates coupled with water are listed in Table 1 in the range of 0ono4 and

1om0o6, where m0 indicates the number of nodal circles. It is found that the theoretical natural frequencies are in

excellent agreement with the finite element results, to within a 0.2% error range when the compressibility of water is

taken into account. The mode shapes can be classified into two transverse vibration mode categories according to the

relative motion directions between the two annular plates while vibrating; that is, the in-phase and out-of-phase modes,

as shown in Fig. 3. However, strictly speaking, these two mode categories cannot become perfect in-phase and out-of-

phase modes because the geometries of the two annular plates are not identical. The higher modes can develop into
Table 1

Comparison of the FEM and theoretical natural frequencies for two annular plates coupled with bounded water

Mode Natural frequency (Hz) Discrepancya (%) Mode shape

n m0 FEM Theory

Incompressible Compressible

0 0 — — — — —

1 269.9 269.9 270.0 0.04 In-phase

2 336.5 336.9 336.9 �0.14 Out-of-phase

3 773.6 774.0 773.6 0.00 In-phase

4 999.7 1004.0 998.1 0.16 Out-of-phase

5 1587.4 1589.6 1586.7 0.04 In-phase

1 0 55.3 55.3 55.3 0.00 Out-of-phase

1 285.1 285.1 285.1 0.00 In-phase

2 384.2 384.6 383.9 0.08 Out-of-phase

3 801.2 801.4 801.1 0.01 In-phase

4 1067.8 1071.0 1066.0 0.17 Out-of-phase

5 1626.8 1628.4 1625.9 0.06 In-phase

2 0 104.0 104.1 104.0 0.00 Out-of-phase

1 330.3 330.4 330.4 �0.03 In-phase

2 465.7 466.2 465.3 0.09 Out-of-phase

3 873.5 873.8 873.5 0.00 In-phase

4 1178.2 1181.4 1176.3 0.16 Out-of-phase

5 1722.9 1724.9 1722.3 0.03 In-phase

3 0 173.3 173.4 173.3 0.00 Out-of-phase

1 420.6 420.7 420.7 �0.02 In-phase

2 587.7 588.4 587.4 0.05 Out-of-phase

3 1003.8 1004.6 1004.0 0.02 In-phase

4 1335.5 1339.1 1333.6 0.14 Out-of-phase

5 1888.4 1891.5 1888.1 0.02 In-phase

4 0 271.2 271.4 271.2 0.00 Out-of-phase

1 555.9 556.3 556.1 �0.04 In-phase

2 755.0 756.2 754.7 0.04 Out-of-phase

3 1201.4 1202.9 1201.8 �0.03 In-phase

4 1544.3 1548.5 1542.5 0.12 Out-of-phase

5 2136.7 2141.8 2136.9 �0.01 In-phase

Compressible: c ¼ 1483m/s; incompressible: c!1.
aDiscrepancy ¼ (FEM�compressible)� 100/FEM.
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First mode ( n = 0, m’  = 0) Second mode (n = 0, m’  = 1)

Third mode (n = 0, m’  = 1) Fourth mode (n = 0, m’  = 2)

Fifth mode ( n = 0, m’ = 1) Sixth mode (n = 0, m’ = 2)
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Fig. 3. Mode shapes for the two annular plates coupled with a fluid: – – – – –, upper plate; ________, lower plate. (a) First mode (n ¼ 0,

m0 ¼ 0), (b) second mode (n ¼ 0, m0 ¼ 1), (c) third mode (n ¼ 0, m0 ¼ 1), (d) fourth mode (n ¼ 0, m0 ¼ 2), (e) fifth mode (n ¼ 0,

m0 ¼ 1), (f) sixth mode (n ¼ 0, m0 ¼ 2).
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mixed modes which cannot be categorized as in-phase or out-of-phase modes. As shown in Fig. 3, the difference in the

plate maximum deflection between the two plates is not dominant in the in-phase modes, because the movement of one

plate contributes to that of the other plate owing to transverse movement of the fluid. On the contrary, the difference in

the plate deflection for the out-of-phase modes is greater than that of the in-phase modes, because the deflection of one

of the annular plates tends to hinder the deflection of the other plate through the fluid. Therefore, the maximum

deflection of the more flexible plate is greater than that of the stiffer one. Fig. 4 shows typical displacement vector plots

when identical annular plates with d ¼ 50mm are coupled with water for n ¼ 0. The first mode corresponds to the in-

phase mode where the major fluid displacement vectors tend to move in the transverse direction, while the second mode
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1st mode (m’= 0, in–phase mode) 

2nd mode (m’= 0, out–of–phase mode) 

11th mode (m’= 5, out–of–phase mode) 

12th mode (m’= 5, out–of–phase mode) 

Fig. 4. Displacement vector plots of typical mode shapes with n ¼ 0, a ¼ b ¼ d ¼ 50mm and c ¼ 1483m/s. First mode (m0 ¼ 0, in-

phase mode), 2nd mode (m0 ¼ 0, out-of-phase mode), 11th mode (m0 ¼ 5, out-of-phase mode), 12th mode (m0 ¼ 5, out-of-phase mode).
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corresponds to the out-of-phase mode where the major vectors of the fluid displacement tend to move in the lateral

direction. The difference in the fluid movement vectors creates a change in the natural frequency. Furthermore, the fluid

movement is localized into several regions according to an increase in the number of nodal circles or nodal diameters,

and the characteristics of the fluid flow direction become indistinct. The natural frequency difference between the in-

phase and out-of-phase modes is gradually reduced as the number of nodal circles or nodal diameters is increased. The

normalized natural frequency, defined as the natural frequency of the structure in contact with fluid divided by the

corresponding natural frequency in air, increases with an increase of the number of nodal circles or nodal diameters.

The 11th and 12th modes show out-of-phase modes with five nodal circles as illustrated in Fig. 4. The fluid

displacement is predominant near the surfaces of the two plates in both modes. Although the 11th and 12th modes have

the same number of nodal circles, the fluid displacement patterns are different and the nodal circle points do not
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coincide. In the 12th mode, a fluid surge appears near the inner edge, induced by fluid compressibility. It is observed

that the fluid surge (or concentration) at a fluid region far from the structure due to compressibility appears more

frequently in the higher out-of-phase modes. The various abnormal mode shapes with fluid surge are similar to the 12th

mode of Fig. 4, in accordance with the increase in fluid compressibility.

3.3. Effects of the distance between the annular plates

Figs. 5–8 illustrate the effects of the distance between the two annular plates on the fluid-coupled natural frequencies,

when the geometry and the material property of the two plates are identical to each other. It is well known that the

natural frequency of the plate in contact with fluid is always less than that of the corresponding dry mode, due to the

contribution of a hydrodynamic mass [e.g., Paı̈doussis, 2004]. Hence, the normalized natural frequency always lies

between unity and zero. As shown in Figs. 5 and 7, the normalized natural frequency of the out-of-phase modes

gradually increases with an increase of the number of nodal diameters (n) or nodal circles (m0) by virtue of a localization

(or division) of the fluid flow. The normalized natural frequencies increase and eventually converge to specific values,

which are equivalent to the case of infinite distance between the plates. For a fixed distance ratio (d/R), the normalized

natural frequency decreases as the number of nodal circles decreases. Convergence occurs at a smaller distance ratio

(d/R) as the number of nodal circles increases. On the contrary, the normalized natural frequencies decrease and also

converge to specific values, which are equivalent to the case of infinite distance between the plates with an increase in

d/R for the in-phase modes as illustrated in Figs. 6 and 8. A small fluid thickness reduces the natural frequencies

drastically for the out-of-phase modes, while the normalized natural frequencies increase sharply with a decrease of d/R

for the in-phase modes. Similarly, the normalized natural frequencies increase with an increase of the number of nodal

circles (n) for the fixed m0 due to the fluid flow localization or division regardless of the modal category (in-phase modes

and out-of-phase modes). As d/R increases, the normalized natural frequencies of the corresponding in-phase and out-

of-phase modes will approach and merge with each other in the infinite fluid case.

3.4. Effects of the inner radius

The inner radius effects on the normalized natural frequencies for n ¼ 0 and 1 are shown in Figs. 9 and 10,

respectively, where the two plates coupled with water have the same geometry and the same material properties, so

a ¼ b and d ¼ 30mm. The inner radius effect on the normalized natural frequencies is not negligible except for m0 ¼ 0

as illustrated in Figs. 9 and 10. This fact can be explained as follows: generally, the normalized frequency of a bluff body

can be expressed as

o
oa

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þMf =M

s
, (33)

where oa is the natural frequency of the dry mode; Mf and M are the hydrodynamic mass (or added mass) and the

structural mass, respectively. When the inner radius of the two plates increases and the outer diameter is fixed, the mass

of the plates will be reduced by a square of the plate radius, and concurrently, the fluid-contacting area will also

decrease at the same rate. Therefore, Mf =M is approximately constant, regardless of the inner radius. The normalized

natural frequency (o=oa) will not change according to the inner radius, since the vibration mode with m0 ¼ 0 is very

close to the vibration mode of a bluff body. When the number of the nodal circles (m0) increases, Mf =M decreases by

the localization of the fluid flow, and finally the normalized natural frequencies increase by increasing the inner radius,

regardless of modal category, when the outer radius of the two plates is fixed.

3.5. Effects of the compressibility

A further comparison is made for an investigation of fluid compressibility effects on the coupled natural frequencies.

Figs. 11 and 12 show the natural frequencies of the in-phase and the out-of-phase modes obtained, respectively, by the

ANSYS analysis for n ¼ 0. Since several modes with the same number of nodal circles can appear as in Fig. 4, when the

fluid compressibility increases, the radial modes are arranged in order of the serial mode instead of m0 in Figs. 11 and

12. When the sound speed changes from c ¼ 1483 to 148.3m/s, the natural frequencies of the in-phase mode decreases

as shown Fig. 11. Especially, the natural frequency drop of the higher radial modes is greater than that of the lower

radial modes. The frequency drop of the in-phase modes for c4500m/s is negligible between the first mode and the

fourth mode. The frequency drop of the out-of-phase modes is remarkable for the higher radial modes when compared
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Fig. 6. Normalized natural frequency of the two identical annular plates coupled with water for the in-phase mode with n ¼ 1: –&–,

m0 ¼ 0; –J–, m0 ¼ 1; –n–, m0 ¼ 2; –,–, m0 ¼ 3; –B–, m0 ¼ 4; –v –, m0 ¼ 5.
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Fig. 5. Normalized natural frequency of the two identical annular plates coupled with water for the out-of-phase mode with n ¼ 1:

–’–, m0 ¼ 0; –K–, m0 ¼ 1; –m–, m0 ¼ 2; –.–, m0 ¼ 3; –E–, m0 ¼ 4; –b–, m0 ¼ 5.
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Fig. 8. Normalized natural frequency of the two identical annular plates coupled with water for the in-phase mode with n ¼ 2. Key as

in Fig. 6.
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Fig. 7. Normalized natural frequency of the two identical annular plates coupled with water for the out-of-phase mode with n ¼ 2.

Key as in Fig. 5.
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Fig. 10. Inner radius effect on the normalized natural frequency of the two identical annular plates coupled with water for n ¼ 2 and

d ¼ 30mm. Key as in Fig. 9.
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Fig. 9. Inner radius effect on the normalized natural frequency of the two identical annular plates coupled with water for n ¼ 1 and

d ¼ 30mm: –&–, in-phase mode, a ¼ 10mm; –J–, a ¼ 50mm; –n–, a ¼ 100mm; –,–, a ¼ 150mm: – –’– –, out-of-phase mode,

a ¼ 10mm; – –K– –, a ¼ 50mm; – –m– –, a ¼ 100mm; – –.– –, a ¼ 150mm.
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Fig. 12. Compressibility effect on the normalized natural frequency of the two identical annular plates coupled with a compressible

fluid for the out-of-phase modes. Key as in Fig. 11.
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Fig. 11. Compressibility effect on the natural frequency of the two identical annular plates coupled with a compressible fluid for the in-

phase modes (–&–, first mode; –J–, second mode; –n–, third mode; –,–, fourth mode for n ¼ 0: – –’– –, first mode; – –K– –,

second mode; – –m– –, third mode; – –.– –, fourth mode for n ¼ 1).
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with that of the in-phase modes, as illustrated in Fig. 12. That is to say, the fluid compressibility affects the out-of-phase

modes rather than the in-phase modes and it also affects the higher radial modes. Several abnormal mode shapes which

deviated from the dry mode shape are observed in the higher out-of-phase modes for the compressible fluid.
4. Conclusions

An analytical method to estimate the natural frequencies of two unequal annular plates coupled with a compressible

fluid is developed using the Rayleigh–Ritz method and the finite Hankel transform. It is observed that the two sets of

modes, the so-called out-of-phase and in-phase modes, are obtained alternately in the fluid-coupled system and these

modes gradually can shift to mixed modes according to the geometric differences between the two annular plates. It is

verified that this theoretical approach can predict the coupled natural frequencies excellently. It is also found that the

normalized natural frequency of the out-of-phase modes increases and converges to a specific value as the distance ratio

(d/R) decreases, regardless of the number of nodal circles (m0), while those of the in-phase modes decrease, owing to the

localization (or division) of the fluid flow. It is also observed that the inner radius does not affect the normalized natural

frequencies for m0 ¼ 0 in the case of a fixed nodal diameter, and the fluid compressibility affects the out-of-phase modes

and the higher modes rather than the in-phase modes and the lower modes.
Appendix A

A.1. Coefficients for the mode shapes

Anm ¼
1

Tnm

½fI0nðlnmaÞKnðlnmRÞ � InðlnmRÞK0nðlnmaÞgJnðlnmaÞ

þ fInðlnmaÞK0nðlnmaÞ � I0nðlnmaÞKnðlnmaÞgJnðlnmRÞ

þ fInðlnmRÞKnðlnmaÞ � InðlnmaÞKnðlnmRÞgJ0nðlnmaÞ�,

Bnm ¼
1

Tnm

½fYnðlnmRÞK0nðlnmaÞ �Y0nðlnmaÞKnðlnmRÞgJnðlnm aÞ

þ fY0nðlnmaÞKnðlnmaÞ �YnðlnmaÞK0nðlnmaÞgJnðlnmRÞ

þ fYnðlnmaÞKnðlnmRÞ �YnðlnmRÞKnðlnmaÞgJ0nðlnmaÞ�,

Cnm ¼
1

Tnm

½fInðlnmRÞY0nðlnmRÞ � I0nðlnmaÞYnðlnmRÞgJnðlnmaÞ

þ fI0nðlnmaÞYnðlnmaÞ � InðlnmaÞY0nðlnmaÞgJnðlnmRÞ

þ fInðlnmaÞYnðlnmRÞ � InðlnmRÞYnðlnmaÞgJ0nðlnmaÞ�,

Tnm ¼ InðlnmRÞK0nðlnmaÞYnðlnmaÞ � I0nðlnmaÞKnðlnmRÞYnðlnmaÞ

� InðlnmRÞKnðlnmaÞY0nðlnmaÞ þ InðlnmaÞKnðlnmRÞY0nðlnmaÞ

þ I0nðlnmaÞKnðlnmaÞYnðlnmRÞ � InðlnmaÞK0nðlnmaÞYnðlnmRÞ,

A.2. Coefficients for the integration

x1nms ¼
1

b2ns � l2nm

 !
; x2nms ¼

1

b2ns þ l2nm

 !
,

L1nms ¼

Z R

a

JnðlnmrÞJnðbnsrÞrdr

¼ x1nms

ðlnmRÞJnðbnsRÞJ
0
nðlnmRÞ � ðlnmaÞJnðbns aÞJ0nðlnmaÞ

þðbnsaÞJnðlnmaÞJ0nðbnsaÞ

( )
,
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L2nms ¼

Z R

a

YnðlnmrÞJnðbnsrÞrdr

¼ x1nms

ðlnmRÞJnðbnsRÞY
0
nðlnmRÞ � ðlnmaÞJnðbnsaÞY

0
nðlnmaÞ

þðbnsaÞYnðlnmaÞJ0nðbnsaÞ;

( )
,

L3nms ¼

Z R

a

InðlnmrÞJnðbnsrÞrdr

¼ x2nms

ðlnmRÞJnðbnsRÞI
0
nðlnmRÞ � ðlnmaÞJnðbnsaÞI

0
nðlnmaÞ

þðbnsaÞInðlnmaÞJ0nðbnsaÞ

( )
,

L4nms ¼

Z R

a

KnðlnmrÞJnðbnsrÞrdr

¼ x2nms

ðlnmRÞJnðbnsRÞK
0
nðlnmRÞ � ðlnmaÞJnðbnsaÞK

0
nðlnmaÞ

þðbnsaÞKnðlnmaÞJ0nðbnsaÞ

( )
,

Hns ¼

Z R

0

fJnðbnsrÞg
2rdr ¼

R2

2
1�

n2

ðbnsRÞ
2

( )
fJnðbnsRÞg

2,

S1m ¼
R2

2
fJ0nðlnmRÞg2 þ 1�

n2

ðlnmRÞ2

� �
fJnðlnmRÞg2

	 


�
a2

2
fJ0nðlnmaÞg2 þ 1�

n2

ðlnmaÞ2

� �
fJnðlnmaÞg2

	 

,

S2m ¼
R2

2
fY0nðlnmRÞg2 þ 1�

n2

ðlnmRÞ2

� �
fYnðlnmRÞg2

	 


�
a2

2
fY0nðlnmaÞg2 þ 1�

n2

ðlnmaÞ2

� �
fYnðlnmaÞg2

	 

,

S3m ¼ �
R2

2
fI0nðlnmRÞg2 � 1þ

n2

ðlnmRÞ2

� �
fInðlnmRÞg2

	 


þ
a2

2
fI0nðlnmaÞg2 � 1þ

n2

ðlnmaÞ2

� �
fInðlnmaÞg2

	 

,

S4m ¼ �
R2

2
fK0nðlnmRÞg2 � 1þ

n2

ðlnmRÞ2

� �
fKnðlnmRÞg2

	 


þ
a2

2
fK0nðlnmaÞg2 � 1þ

n2

ðlnmaÞ2

� �
fKnðlnmaÞg2

	 

,

S5m ¼
R2

2
J0nðlnmRÞY0nðlnmRÞ þ 1�

n2

ðlnmRÞ2

� �
JnðlnmRÞYnðlnmRÞ

	 


�
a2

2
J0nðlnmaÞY0nðlnmaÞ þ 1�

n2

ðlnmaÞ2

� �
JnðlnmaÞYnðlnmaÞ

	 

,

S6m ¼
R2

2ðlnmRÞ
½JnðlnmRÞI0nðlnm RÞ � InðlnmRÞJ0nðlnmRÞ�

�
a2

2ðlnmaÞ
½JnðlnmaÞI0nðlnmaÞ � InðlnmaÞJ0nðlnmaÞ�,
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S7m ¼
R2

2ðlnmRÞ
½JnðlnmRÞK0nðlnmRÞ �KnðlnmRÞJ0nðlnmRÞ�

�
a2

2ðlnmaÞ
½JnðlnmaÞK0nðlnmaÞ �KnðlnmaÞJ0nðlnmaÞ�,

S8m ¼
R2

2ðlnmRÞ
½Ynðlnm RÞI0nðlnmRÞ � InðlnmRÞY0nðlnmRÞ�

�
a2

2ðlnmaÞ
½YnðlnmaÞI0nðlnmaÞ � InðlnmaÞY0nðlnmaÞ�,

S9m ¼
R2

2ðlnmRÞ
½YnðlnmRÞK0nðlnmRÞ �KnðlnmRÞY0nðlnm RÞ�

�
a2

2ðlnmaÞ
½YnðlnmaÞK0nðlnmaÞ �KnðlnmaÞY0nðlnmaÞ�,

S10m ¼ �
R2

2
K0nðlnmRÞI0nðlnmRÞ � 1þ

n2

ðlnmRÞ2

� �
KnðlnmRÞInðlnmRÞ

	 


þ
a2

2
K0nðlnmaÞI0nðlnmaÞ � 1þ

n2

ðlnmaÞ2

� �
KnðlnmaÞInðlnmaÞ

	 

.
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